Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genetica ; 150(6): 379-394, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36136258

ABSTRACT

The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.


Subject(s)
Diptera , Animals , Humans , Diptera/genetics , Larva/genetics , Calliphoridae , Netrins/metabolism , Salivary Glands , Biomarkers/metabolism , RNA, Messenger/metabolism
2.
Adv Pharm Bull ; 11(4): 632-642, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34888210

ABSTRACT

Purpose: Ranibizumab is a monoclonal antibody fragment, targeting all isoforms of vascular endothelial growth factor A (VEGF-A), a protein involved in angiogenesis. It is used to treat age-related macular degeneration (AMD), retinal vein occlusion (RVO), and diabetic macular edema (DME), which are associated with blindness worldwide. However, proper treatment can decrease the loss of vision in about 90% of patients. Because of poor drug uptake in topical therapy and several adverse side effects of systemic irregularities and intravitreal injections, sustained-release drug delivery systems are more suitable for treatment. However, there are many challenges in the development of these systems due to the loss of protein activities. Methods: After drug complexation by the ion pairing method and preparation of a polymeric implant, containing the drug, the characteristics of the complexes were examined by Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. The stability of antibody activity and biocompatibility of the released drug from the implant were assessed by bioassays and MTT assay, respectively. Finally, the release kinetics were investigated. Results: The bioassays showed the higher activity of the drug complex, compared to the free form, besides good biocompatibility in vitro. Also, the release data confirmed sustained and controlled release characteristics for the prepared implant. Conclusion: In this study, for the first time, we proposed a method for developing a sustained-release intraocular implant, consisting of ranibizumab by the heating method. This method allows for the industrial production of ranibizumab by extrusion and eliminates the complications related to reservoir systems.

3.
Pathogens ; 10(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671430

ABSTRACT

BACKGROUND: Mosquito galactose-specific C-type lectins (mosGCTLs), such as mosGCTL-1, act as ligands to facilitate the invasion of flaviviruses like West Nile virus (WNV). WNV interacts with the mosGCTL-1 of Aedes aegypti (Culicidae) and facilitates the invasion of this virus. Nevertheless, there is no data about the role of mosGCTL-1 as a transmission-blocking vaccine candidate in Culex pipiens, the most abundant Culicinae mosquito in temperate regions. METHODS: Adult female Cx. pipiens mosquitoes were experimentally infected with a WNV infectious blood meal, and the effect of rabbit anti-rmosGCTL-1 antibodies on virus replication was evaluated. Additionally, in silico studies such as the prediction of protein structure, homology modeling, and molecular interactions were carried out. RESULTS: We showed a 30% blocking activity of Cx. pipiens mosGCTL-1 polyclonal antibodies (compared to the 10% in the control group) with a decrease in infection rates in mosquitoes at day 5 post-infection, suggesting that there may be other proteins in the midgut of Cx. pipiens that could act as cooperative-receptors for WNV. In addition, docking results revealed that WNV binds with high affinity, to the Culex mosquito lectin receptors. CONCLUSIONS: Our results do not support the idea that mosGCTL-1 of Cx. pipiens primarily interacts with WNV to promote viral infection, suggesting that other mosGCTLs may act as primary infection factors in Cx. pipiens.

4.
Malar J ; 19(1): 79, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32075635

ABSTRACT

BACKGROUND: According to the World Health Organization reports, billions of people around the world are at risk for malaria disease and it is important to consider the preventive strategies for protecting the people that are living in high risk areas. One of the main reasons of disease survival is diversity of vectors and parasites in different malaria regions that have their specific features, behaviour and biology. Therefore, specific regional strategies are necessary for successful control of malaria. One of the tools that needs to be developed for elimination and prevention of reintroduction of malaria is a vaccine that interrupt malaria transmission (VIMTs). VIMT is a broad concept that should be adjusted to the biological characteristics of the disease in each region. One type of VIMT is a vector-based vaccine that affects the sexual stage of Plasmodium life cycle. According to recent studies, the aminopeptidase N-1 of Anopheles gambiae (AgAPN-1) is as a potent vector-based VIMT with considerable inhibition activity against the sexual stage of Plasmodium parasite. METHODS: Systems for rapid amplification of cDNA ends (3'-RACE) and genome walking methods were used for sequence determination of apn-1 gene from Anopheles stephensi and distinct bioinformatics software were used for structural analysis. AsAPN-1 was expressed in Spodoptera frugiperda (Sf9) insect cell line using the baculovirus expression system. Recombinant AsAPN-1 was purified under the hybrid condition and its biological activity was assayed. RESULTS: Asapn-1 gene and its coded protein from An. stephensi were characterized for the first time in this study. Subsequently, the structural features and immunological properties of its coded protein were evaluated by in silico approaches. Enzymatic activity of the recombinant AsAPN-1, which was expressed in Sf9 insect cell line, was equal to 6 unit/µl. CONCLUSIONS: Results of this study revealed that AsAPN-1 is very similar to its counterpart in An. gambiae. In silico evaluation and fundamental data which are necessary for its evaluation as a VIMT-based vaccine in the next steps were acquired in this study and those could be useful for research groups that study on malaria vaccine for countries that An. stephensi is the main malaria vector there.


Subject(s)
Anopheles/genetics , CD13 Antigens/pharmacology , Insect Proteins/genetics , Malaria/prevention & control , Plasmodium falciparum/immunology , Animals , Anopheles/enzymology , Insect Proteins/pharmacology , Malaria Vaccines/immunology , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...